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Abstract

Abdelfattah et al. [2] had estimated the parameters of the 2-Weibull
distribution using Bayesian estimation. Abdelfattah [1] had estimated
the Weibull density using goodness of fit tests. The estimation of the
Weibull density is now introduced by parametric methods. Some
numerical results were obtained through a simulation study to obtain
the critical values for some well known statistics, beside the power
function for these tests.

1. Introduction

Suppose that p(x|6) is the distribution of a random sample x.
Suppose further that a random sample of n observations x =
(x;, x9, ..., x;) 1is available from this distribution. Let y be a future
observation coming from the parametric density function p(y|0) which is
unknown. Then, there are two available methods for estimating p(y|0).

The first method is the classical estimative which uses
p(y10) = p(y16 = 6), (1.1)

where 6 is an estimate of 8 based on the sample x.
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The second method is the Bayesian predictive method which uses
POID) = | p(y10)p0]v)de, (1.2)

where p(0|x) is the posterior distribution of 0 given x, based on the
prior distribution p(6) and the sample x. Geisser [7] proposed some
conditions on p(y|x) before it can be used as a surrogate density for
p(y]6). Aitchison [3] introduced a criterion for evaluating the closeness

of the estimative density and the predictive density to the true density of
a future observation. Further theoretical justification for the use of
p(y|x) was provided by Murray [10, 11] and Ng [12] in terms of
invariance. Dunsmore [6] and Amaral and Dunsmore [4] have shown that

in the case of large samples the predictive density p(y|x) and the

estimative density p(y|0 = é) are approximately related.

2. Aitchison’s Criterion

The Aitchison’s criterion focuses on the small sample sizes where it
uses the Kullback and Leibler [8] measure of the divergence. The
divergence of any estimate g(y|x) to the true unknown density p(y|0) is

given by

p(y|0)

unless g(y|x) coincides with p(y|0).

If we have two estimates for p(y|0), say q(y|x) and r(y|x), then
q(y|x) is closer to p(y|6) if

L Py e)lOg[ aly| ;))

r(y|x

de >0 (2.2)

and it depends on 0 and x.

The measure is then represented by the expectation of (2.2) with
respect to p(x|0) as follows:
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Jp(fiﬁ)j p(yFB)log( ((v[lt}))dydz- (2.3)

In general the criterion in (2.3) will depend on 6, but in some cases does

not.

The expectation of criterion (2.3) over different values of  with
respect to the prior distribution p(8) and replacing q(y|x) by p(y|x) is

expressed as

[ 20 j plx16) [ » y|e)1og(r(y|'§))]dyme 2.4

Since p(0)p(x10) = p(x)p(®1x) and ply|x) = [ p(y10)p(®|x)dd, the

criterion (2.4) after a change of the order of the integration becomes

Jjo P [, 121108 221 oy 25)

Since IY ply|x) log(-‘?gl—gjdy > 0, equation (2.5) is always positive for
any r(y|x) different from p(y|x). This would mean the superiority of
the predictive method to the estimative method if averaging over 6 is
possible. But if criterion (2.3) does not depend on 6 and it is positive, then
q(y|x) is closer to p(y|6) than r(y|x). If replacing q(y|x) by p(y|x)
makes equation (2.3) free from 6, then it must be positive according to
equation (2.5). Therefore, p(y|x) will be better than r(y|x).

3. The Bayesian Predictive Method for Estimation of
Weibull Density

In this section we will compare the estimative method and the
Bayesian predictive method for estimating the Weibull density by
applying the Aitchison criterion.

Suppose a future observation with probability density function

f(x; o, B) = g(%}ﬁ_l exp[— [éﬂ x>0 (3.1)
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and suppose also that a random sample x = (x, xg, ..., x,) is available

from the above distribution. We shall estimate the Weibull density when
o is unknown and B is known and when both o and f} are unknown,

3.1. Estimating the Weibull density when B is known

First we will assume that the distribution of a future observation
(say) y 1s given by equation (3. 1) and assume also that the distribution for
n observations x = (x), xg, .., x,) is available from the same above

distribution. The maximum likelihood estimate of o when B is known is
1/p
a. By replacing o by & = [%J in p(y|a, B) the estimative density

function becomes

B
p(y|a =&, B) = [_[;Ji?)_ﬂ_yﬁ—lexp - éﬁi
"_1' n
_ nTBya-l e,“,[_ Eia_'] ¥y>0, aB>0 (3.2)

since ¢ = fo'
i=]
If we combined the prior distribution of o which is in the form
a, bo Pa,+1
p(a) = b,°Bexp| - =y [r(ao)a ® ], a20
o

and the likelihood function, then we will obtain the posterior distribution
of a given x which takes the expression

B(by +1¢)""%
T(n +a,)o*%)B+1

wiadbBt p{— i], a0, (3.3)

]-(a)uoﬁ-rl .

pla|x) =

I
o
—
=] o
=+

L
e

where a = n+a, and b = b, + 1.
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The predictive density function from equation (1.2) is

Sbr}yﬁ-—l
B(L, a)(»P +b)**1’

ply|x) = I: plyla, B)pla|x)da = y>0 (3.4

which is the inverse beta distribution written Inb(1, a, b).

If we take a, = b, = 0 when a = n+a, and b = b, +¢, then

Be"yPt npenyP!

#rla) BL n)(y% + 2L (5P 4oyl

y>0 (3.5)

and if we compare it with equation (3.1), we will get

g exp[—yi}
t B
log( p(y|x) )= o o

p
y
plyla, B) P + 1y (1) log[l + T]’ (3.6)

where the above expression depends on y® and ¢ only through the ratio

yP/t. The distribution of z = P/t is Inb(, n, 1) and it is independent of

1

e and:

a. Since E(z) =
I: p(z)log(l + 2)dz = W(n + 1) - W(n),
d
where W(h) = Elog r'(h),

J'X L, plx|a, B)p(y|e, B)lcg(ﬁ%}bdi

=(n+1)logt+ e (n+1)log(¥(n +1)- ¥(n)) (3.7)

is free from a. This indicates that the predictive estimate is better than
the estimative density based on Kullback-Leibler measure of divergence.

3.2. Estimating the Weibull density when B is unknown

When we assume that both a and B are unknown then they will be
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. i . p
plyla, B) = —ﬁT_yB'I exp[— !—J ¥y>0, a,p>0. (3.8)
aP aP

To get the predictive density function for Y given x, we will use the
posterior distribution of o and B which is given by

t

B uPlp of
anﬂ+l n
@ PlX)=—— whe U= .
oo Ble) = — 8 % we=]T
Therefore
A
ﬁnuﬁ-le qp
0 e B B-1 yl'3 o B+1
x) = - P - | —E——— dad
ply|x) J; J;aﬁy e p[ | TTRT, adp

l'(n + 1)!2 _ nfg

L -1, B8

n-1_p-1 o ahoh-1. B=i
BB 5 ad I = L 1 A

where I, = J’m T—
0 O Py

tﬂ.

It will be difficult (even numerically) to compare the closeness of the
estimative density (3.8) and the predictive density (3.9) to the true
density p(y|a, B) based on Kullback-Leibler measure. Therefore we will

use the mean square error as a measure of the divergence. Then the

divergence of p( y|a, B) from P(y|a, B) will be given by

M, = J: [ev1e, )~ p(y 16, B p(y|a, p)dy, (3.10)

We note that M, depends on the sample x, therefore we will use its

expected value with respect to x. This will give
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B0 = [ Miplx|a, pldx 3.11)
Also the divergence of p(y|x) from p(y|a, B) is also given by

M, = _Lm[p{yru, B) - p(y 1) p(y |, B)dy. (3.12)
If we take the E(M,) as above, then we will get
E(M,) = _L, M;p(x|a, B)dx. (3.13)

The predictive density function will be closer to the true density than
the estimative density if

E(M3) < E(M,) (3.14)

and we will check this by the following numerical calculations. E(M,)

can be estimated by

=z

M
%? % Z [p(; |, B) - p(3; |6, B)F, (3.15)
~ &

4

L}
—

where y; will take very large number N from its valid values, while there
will be M samples x,, x,, ..., Xy with M =1000. Also E(M;) can be

estimated by

[p(y; e, B) - p(¥; | 2)P, (3.16)

Mz

N
N2

=1 x=

—

where p(y|a, ), p(y|&, B) and p(y|x) are given by equations (2.7), (3.8)
and (3.9), respectively.

4. Numerical Calculations

Now, we will compare the closeness of the estimative density
p(y14, B) and the predictive density p(y|x) to the true density p(y|a, B),

when both a and p are unknown, for the Weibull distribution. So we used
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the expected mean square error (MSE) as a measure of the divergence of
p(y|& B) from p(y|a, B) which is expressed by E(M;) and the
divergence of p(y|x) from p(y|a, B) which is given by E(M,), then we
will compare between E(M;) and E(M,) to see which density will
estimate the true density better,

As example, the results in Table 4.1 for n = 10 and certain values of
o and B.

Table 4.1. The results of E(M;) and E(M,) for n = 10

o 1 2
p E(M;) E(M;) E(M,) E(M,)
0177 .0138
.0234 0131 .0178 .0098
4 .0302 0134 .0234 .0104

It is noticed from Table 4.1 that E(M,)> E(M,) for the values

calculated which indicates that the predictive density is closer than the
estimative density to the true density. This shows that p(y|x) is a better

estimator than p(y|&, B) for p(y|a, B) based on the mean square error

as a criterion.
5. Asymptotic Predictive Distribution

We will concentrate in this section on the work of Dunsmore [6] who
derived an approximation for the Bayesian predictive distribution as

defined in equation (1.2) when n is large.

The asymptotic form of p(6|x) has been broadly discussed (see
Lindley [9]). However, for reasonable conditions, the posterior density
function is asymptotically normal with mean 6 and variance (nCé)'l,
where 6 is the maximum likelihood estimation and Cg 1s the analogue of

Fisher's measure of information, that is,
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_ 2° log p(x]6)

Cn =
9 ne?

By using Tayler’s theorem Dunsmore [5] expanded p(y|6) about 6

as follows:

) ) . o
plylx) = Ie[p(ylﬁ)+(9—ﬁ)%+%(ﬁ~ﬁ)2afT-Eyzwl+--]p(9I£)dﬁ

= p(r18)+ PAO [ (0-)p(0] 0o

2%p(y |6

,1 M (0~ 07 po1x)do + -,
e

2 2
since I@Bp(9|£)dﬁzé is almost the posterior mean and

_[9 (0-0)*p(B|x)do = (nCy )71 is almost the posterior variance,
A1 -1 8%p(y]6
P1x) = p(r10) + 1 (ncy) T2OIO) (5.1)
a0

where Dunsmore [5] has retained terms up to O(%)

Similarly when we have two unknown parameters (say) a and B, then

P(y1x) isgivenby p(y|x) = [ [ p(yle, B)ple, Blx)dadp.

Using Taylor’s expansion of 2nd order, we get

ply|x) = _[B L[p(ylﬁ. 5)+(ﬂ—&)%¥+(ﬁ-ﬁ)w

3 2 ~ 0
+(@-p)° %j;'ﬁ)- + - | pla, Bl x)dodB,

since Iﬁ L plo, Blx)dadp =1 and since L ap(a, Blx)da = a, Ig Bp(e, B|x)dB
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= fi, we get directly
g a1 1 3%plyla, B
p(y1x) = p(yla, )+ :‘,‘*(1"1011)&‘[~3 %H

o1 @p(yla, B) 1 .1 3%plyla,
+(nclz)&fﬁ—p%g—@*’g(ﬂczz)&}ém+---.

where

8% log p(x |4, B) Ci0) __ 2% log plx|&, B)
. o)y 3 = - RIS B)

O epeied),

. .
(Cony j = - —ELEILD) loi‘gﬁ'a' 2

and we have retained terms up to O(i}

In the case of the Weibull distribution when o is unknown and B is

known, we have

Inplx|ja)=nlnf-nlna +(B—1)[ilnx,- —nln.;]_(alz)aixf,
i=1

=1
then
n
i
dlnp _ _n_ n(ﬁ—1!+ i-1
do o a aftl
and

BE+1)Y P 86 + 1)) xf
d®’lnp _ n  n@-1)_ ; np _ ;Zl: _

dcf.z Of.2 U.2 aﬂ+2 ﬂ2 CtB+2

Then

2{5 np(p + l)Z x?

. 5. i=1
aly = a oP*2
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p-1 B
Now, we have p(y|a) = By—e;!q;{— y—:l then
ﬂﬂ (Iﬁ

(sl 52l 2)
dplyla) _ . a (QBH ex}f{ e Ba”™" exp 7

da o 2P

B
- 1o 252

ab o
Therefore
d*ply|a) BE-1)y" B By Y
—52;"‘1- = p(y|a) ——"QBT+;‘2— + p(y|a) W a

= p(J’hﬂ(B(B;l) _ BB+ I)yB . B2y23}

u[5+2 u2[3+2

Then substituting in (5.1), we get

BB +1) _pEp+1)y° | py*P
~p+2 &2ﬁ+2

P(y12) = ply1d) + 3 ply|8)| —&

N . 1 (B+1 (3B+1)y* 4%

Equation (5.2) may be written as
pylx) = p(yld)[l + 0[%]]. (5.3)
n

This means that the predictive density is almost equal to the estimative
density, when n is large.

In the case when both a and B are unknown and where p(y|a, p) is

given by equation (3.8), then p(y|x) takes an expression similar to (5.3)
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which also indicates that, the predictive density is almost equal to the
estimative density when n is large.

6. Optimal Approximation for the Predictive Density

The Kullback and Leibler [8] measure of divergence is given here

ply|x)
IY p(y|x) Iog( = E)de' (6.1)

It is positive unless w(y|x) is greater than p(y|x). If w(y|x) is

constrained to be within the same family of p(y|6), then

w(y|x) = p(y|0 = 0°) is the optimal estimate of p(y|x), where 0° an

estimate of 0 is chosen to minimize

ply|x)
_[Y ply|x) log{ ol e‘)]dy' (6.2)

Equivalently we need to select 8° to maximize

j'y p(y]x)log p(y|0°)dy. ©.3)

Under regularity conditions, the value 8* which maximizes (6.3) is

obtained by setting

0
m-

_[Y ply|x)log p(y|6")dy = 0. (6.4)

Assume that p(y|0) is one parameter exponential family, that is,

p(y10) = exp(a(0)b(y) + c(6) + d()) (6.5)

and using equation (6.4) the solution will be

Ey;x(b(y)) = - %- (6.6)

As an example, we consider the case of the Weibull distribution when
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B is known where we assume that p(y|a) defined by equation (1.5) is one

parameter exponential family, that is,
ply|a) = exp(A(a) B(y) + C(a) + D(y)),

where

Ale) = -—lﬁ_, B(») = »® and C(a)=-Blna.
o

Therefore, by using the equation

3 L
£ L p(y|x)log p(y|a’)dy = 0,

the solution becomes

c'(e")

Ey;x(B(y)) = - A0°)

; : + [t P
which gives a —(n—l] s

7. Asymptotic Goodness of Predictive Fit

The main idea of this section is to find an asymptotic measure of the

relative closeness of p(y|x) and p(y|6) to the true density p(y|0). By

using Taylor’s theorem for expanding p(y|6) about 6, we get
- ~ 3p(y|6 ~2 3°p(y]6
P10) = p(y18)+ (0 -8) 2L o o2 TROI0)
00
Retaining the terms of order (6 - 8)%, we find that

p(y10)log 2210 _ (e—é)m+%(g_é)2 322‘(33;@)

p(y10) 9

1(9-6)2[6p(yié)]2
TGl @ ) "
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The posterior density function p(6|x) for large samples is asymptotically

_ 2% log p(x|6)

normal with mean 6 and variance (nCé}‘l. where Cy = -
nog*

Integrating equation (7.1) first with respect to 6 and then with
respect to y will result in the following:

p(y]6)

Aoy 2
=Ly |, p(y|é)[a‘°+§y"’)] dy = L (nC, 1y 6),

where Iy (8) is the amount of Fisher’s information in a single observation

from p(y|6). Then

= p(y16)
I= IK -[Y I@ P(B)P(E!B)p[ylﬁ)log(m]dgdydﬁ

- [, P 5 (nCy) 1y )] (1.2)

It has been noticed in many cases that the value between braces in
equation (7.2) does not depend on x, then we have

I=2(Cy)  Iy() = IA (say). (7.3)

Also the divergence of p(y|6) from p(y|x) is given by

p([2)),. 1, 2 1 (219
va(y'i)l°g(p(y|é)de'8("'0‘*) J.rza(né)( o }dy'

Therefore

Fia L L Ie P(B)P(ﬂB)D(JIlEHOg{%—llg]dedydE

= J.Xp(z)dz{%(nca)_zjy 1 [BZP(yIB)}dy]. (7.4)

p(y10)|  oa?
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Also in many cases the value between braces in equation (7.4) does not
depend on x and as a result

< n2
1w 1 (2°p(y16) -
7= ocy? p(y|é)[ o de_JA (ay)  (75)

which is of order -—1-
n2

In the case of the Weibull distribution when « is unknown and f is
known the divergence of p(y|a, B) from p(y|a, B) is as follows:

- (plyle B) __n+1
I- ji [, [ peptalnpt 10, py1og 221 m}dadydz - s

and

s N2
14 = 5 0nCa)™ [ plyia, ) ZE2A% P gy - 2ncy) 1y 6) = o

Also the divergence of p(y|a, B) from p(y|x) is given by

ply|x) 1 1
e IIPL)p(ny)lo 2516 B))dd- o e ¢

1ot 1 a*plylé, B) 1
=3 (ﬂce) -[Y p(y|li, B)( aaz ] dy = nz .

Now we will compare between I and IA and between J and JA for

different values of n as in Table 7.1.
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Table 7.1. Values of I, IA | J and JA for selected values of n

n I IA J JA

10 .061 050 .0110 .0100
15 .038 .033 .0060 .0040
20 028 .025 .0030 .0030
25 .022 .020 .0020 .0020
30 .018 .017 .0010 .0010
40 013 013 .0008 .0006
50 .010 .010 .0005 .0004

It is clear that the values of IA and JA are better than the values of I

and o for different values of n, which indicates that the approximations

IA and JA of I and J, respectively, are good asymptotic measures of the

closeness of the predictive density and the estimative density to the true

density.
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