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1. Introduction

Nou-linear dynamical systerns, in addition to their fundamental aspect
in the field of mathematics and their applications, have direct potential
technological applications. Tn recent years, research has focused on sys-
tems with external feedback (e.g. see [1] and therein}. This feedback has
played a crucial role in the generation of instabilities in these systemns
[1, 2] {which also occur when there is no external feedback [3]). Due to
the non-linear coupling of watter (e.g. atoms) with radiation, the study
of optical bistability (OB} is widely investigated (see [4, 5]). This phe-
nomenon has potential applications in optical telecommunications and
the quantum processing of information (see {6, 7]).

On the other hand, the experimental realisation of the squeezed
states of the radiation field of reduced quantuiu fluctuation (see recent
review article [8]) has encouraged the investigation of bistable behaviour
among other non-linear systeins in such states as stability analysis, chaos
and bifurcation [9]. Few munerical studies have been performed that in-
dicate the presence of chaotic dynamics in non-dissipative interaction
[10]. Also, in the slowly varying envelope approximation and the rotat-
Ing wave approximation, the study had covered the unperturbed and
perturbed problem [11] of Maxwell-Bloch equations in the ring cav-
ity configuration for a probe laser interacting with a two-level atormic
medium material sawple.

In this paper the iuvestigation of the interaction of two counter-
propagating beamns of equal iutensity in a two-level atomic medium, Fig-
ure 1, where the medium is inn contact with a phase-sensitive environment-
cf [9])- (called a squeezed reservoir) is considered. McCall’s [12] methaod
for handling the field harmonics has been adopted. This method is based
cn a spatial average for the harmonics over a short-distance, that is. coxn-
sidering the Bloch atomic harmonic commponents as constants over this
short distance {cf. [13]).

Our investigation generalizes earlier work [14] where the reservoir,
respousible for the dissipative process., was taken in the normal vacuum
state (no phase-sensitive information).

[t 1s inportant to note that since the internal feedback arises from
the interference between the two beawns, the caleulations are perforined
without the mean-field approximation in which the fields are replaced by
thelr space averaged values e.g. [2, 9, 13]. The linear stability analysis
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Figure 1: Geometry for interaction of two counter-propagating beans

around the steady state regime is investigated analytically and numeri-
cally.

2. The Model Equations

We consider an atomic system in a single mode Fabry-Perot (FP) cavity,
Figure 1. The atomic system is composed of two-level atoms (homoge-
neously broadened) and in contact with a squeezed vacuuwm reservoir
[9] rather than the usual ordinary vacuun reservoir [14]. The model
Maxwell-Bloch equations in the plane-wave approximation are of the
form [13],

ldef ()ef
=4F le
c Ot * 0z 94y (La)
I de,  Oe ey
= P, 1b
g e I (1b)
and
ag_
a5 +BJ. = =2, —vMJ, (2a)
aJ. .
7 +B'J, = =20, —yM'J_ {2b)
aJ, ¥ . ‘
_a_f,_+ (B B )J = _'§+(E J_“FE.]_;_J: {ZCJ
where

£ = eff“'m: - fbf:'”":, ()
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€ and € are the spatially forward and backward field envelopes re-
spectively, g = 2mnwou/c? is the coupling constant with n the atomic
density number, p is the dipole matrix element, w, is the resonant
atomic frequency, v is the decay coefficient, B = Z(1 + 2N) + 4, where
0 = w, — wy, is the atomic detuning, wy is the (laser) driving field fre-
quency. The squeezed vacuum field parameters, N and M, are the
average photon number in the squeezed field and the degree of squeez-
ing respectively, such that | M |2< N(N + 1) [9]. J4 are the quadrature
components of the mean atomic polarization and .J, is the atomic inver-
sion per atom. If N = M = 0, the systemn of model equations describes

the normal vacuum case [14].
87 aJ. 8,

The formal steady state solutions, where Eralairy 5% 0, of
the Bloch equations (2) are given by
—(1+4?) 97 -1
J.St i [ ]. 52 2
o= e L enl (4a)
-1 _
Jit = Ee(bl—-ibg] [1+ 82+ by]e)?] ", (4b)
where
2|M|cos ¢
S P
b 3+ 2|M|sin ¢
? 1[+2N

3. McCall Treatment of the Standing Waves

We use McCall treatment [12] for the standing (plane) wave effects due
to oppositely propagating fields inside the FP cavity. This method is
based on a spatial average for the harmonics over a short distance (7 /k;
k is an integer), i. e. by considering the Bloch harmonics for the energy
and polarization components as constants over this short distance.
In the steady state
st -1+ ‘52):0

z=2u+2Nkﬁﬂp—mT”@—pﬂ”: (5a)
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where p = e7?%0% and

= 62 b 2 2
A= G TS+ hiller 2+ e )]

L2+l P+ @ PIE—4]es Plel?]. (5b)

Consistent with eq. (3} we expand J?* as Fourier series:

e G g
th - § Z Jz,u(ezm;‘:oh + B_kao") \ (6)
=0
where
R : N
Jz,n - _jf .f;t(BQMk”z + emzmkoz)dz ) (7)
Jo

For the non-harmouic components (n = 0) and by using eq-s (5}, a linear
trausformation is applied on 7 so that 7 = —2k,z. where [, = 7 /k, and
Lence the ‘clockwise’ integration in (7) with respect to P gives

—(1 + 4?)

m{[l +52+b1(l Ef |2 -+ | €4 |12)]2

Jio=

L
4l g’} 2. (8)

Similarly, the polarization is expanded as [13],

o 6]

—1
J(2) =) Pulz) 07082 4 37 P (a) im0 = (1 ()", (9)

=| n=—00

and the first harmonics Pr=P_) and P, = P|. are calculated as Fourier
integrals:
ko[ Likas
-Pf.b = - J_ (z)e °“dz . (gd)
' ™ Jo

L the steady state, and from eg-s (2a, b), J_(z) is obtained iu the
form [13]:

i s nye ke 4 poptkos
T TV (doePRor o) !

(10)
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where
ny = yMe — B¢y,
ny = yMe; — B,
d = (B+BYYIMPP—|B?=2(e P+ ]e )
+47(Me}e; + MTesey),
da = 2y(M(€;)* + M*e}) — 2(B + B*)e}ey. (11)

By substituting eq. (10} into the expansion of Ji(z) and evaluating the
integrals [13], we get

¥ 2n1da — nad;
Pr=——|[ny + . 12a

i 2R2d§ - n1d1
Po=—1m + : 12b
b 2d§]i1 et (12b)

4. Steady State Maxwell’s Equations

By setting the time derivatives def;/0t = 0, and using (3), then Maxwell
equations (la, b) take the following form:

d 7
% = %(53 + B! [53(56 + %) + Ba{B7 + [%)}

€ - y L Q‘
I 107 [ﬁg(ﬁs +50) = BB + 2 )]
(13)
d : =
d‘if =Tl pep 7 (83 + 8D [ﬁa(ﬁ? + 500 = Balls + gl)}

dg, - 2, g L d
% =L le | (B3 46D [ﬁa(ﬁg + ﬁ—;) + Ba{fs + ﬁ—;)] :
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where
M = |M|¢dm,
¢ = ||,
& = |e|e?,

¢ = d)m - (d)b + d)f]

B = 4| M| o+ cos{¢)as + %(l + 2N}y

Bo = 4| M| ay+sin(d)az — day
Bs = 2| M |cos($)(|es P+ e |P) —2L+2N) | esfies |
Bs = 2] M|sin(¢)(|ef P - 1e [P
Bs = {{1+2N)? | M P~ |BP-2e [+ e *)
+8| M [ ¢5 || & | cos(¢)]”
— 44| M P [les P+ e [T +2 ] ef || & 2 cos(24)]

+ AL+ 2N)? e Pl e |2

1
— 8| M| (L+2N)|esll e[l e + e [Jcos(e)] }2

1 1
Be = |M||ff!COS(¢)'§(1+2N)£€b|
) )
Br = |M‘||ff|5m(¢)+;|fb|
1 ,
By = |Mi|6b|COS(¢)—§(l+2N)iéb|

: ¢
By = | M] e |sin(d)+ | e
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0 = 4|MIA1+A3cos(¢)+%(l+2N)A4

Qg = 4]MfA2+A3SiI’1(¢J)"‘(5A4

oy = [Mllellef| cos(@)+ ! Mile |

—| €f 2 {%[1 + 2N ) cos(¢) + %sin(qﬁ)]

+legll el 1501+ 2N)sin(g) + & cos()]

a3 = —4{M[(1+2N)|erlie > 8| M |% ¢ | & | cos(g)

— M|Q+2N) g (P IMP= B =2(e P+ e 2)
ar = 4(L+2N) e Pl ey | +8 | M || €f ]| ¢ |? cos()

(1 +2N) Jes [ [V | M P = | BP -2€ *+ | e )]

A = IMeP+{Mlier]e|* cos(24)

~ et 1 (L+2) cos(g) = sin(y)]

. - a
= (51 +2N)cos(¢} + - sim{g}]
| 2 25 - S ol
Ay = |[Mlies|ley|°sin(2¢)+ | e || € | [5(1 + 2N) sin{¢) + ;COS((;)
5 1 , 5
- e [5(1 + 2N}sin{¢) — ;cos(qﬁ]]
Ay = —4|M|(1L+2N) e Ple| -8 M % ef || & | cos(e)

M +2N) fe i " 1M P~ | BP =2 e P+ 6"
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Ay = A1+2N) e [P ep | 48| Ml s 1% & | cos(g)
HA+2N) ep | [P | M P = | BE=2(ier 2+ e |P)].

Within the limits of very large detuning (6 > 1) and small absorption
(agL/6* < 1), we can assuine that the two beams are not depleted (not
dependent on z), so diesp|/dz = 0. Thus, we consider the phase changes
only as the beams propagate along the medium. So.

doy

'&;_ - \/—( ) (ﬁ + ) 6

dgy g7 Bay

el \/—( ~HBo + 65) 0, (14)

where | €7, [2= 1. Hence, from (3) and (14) and within the above limits,
the steady state field is given by

€ss(2) = VIe k=002 o /T ilko~0)2 (156)

5. Linear Stability Analysis

Adding small perturbations to the steady state values €4, ro(= J*} and
ryo(= Ji') and taking their time-dependence to be e, the real part
of A represents the growth rate of perturbation, while the imaginary
part of A represents its oscillation frequency, say €2, near the instability
threshold. Note that a field oscillating at w + ! may interact with the
strong field at w to generate a field at w —  [14]. We, therefore, write
the perturbations as a sum of two terms oscillating at £ and denote
their amplitudes with super-script + and — respectively,
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To(2,t) = rolz) +rf(2)eM + 15 (2)e?" (162
J(2,1) = r_,(z) +rt(2)eM +r(2)e*™ (16b)
Ji(z.t) = (J(2.1))" =1 (2} + (rF(2))*eM

M et (16c)
e(z,t) = ey(2) FeT(2)eM + e (2)eT (16d)
€(2,t) = €,(z) +(€7(2)) et + (e (2)) e (16¢)

On differentiating (16a) with respect to t and comparing the coefficients
of e™ and e*"t we get,

(A+B+ Bl = eulr™ ) deber® bt (o) + (€7)'r_o, (17a)
(A" + B+ B")ry = e (r" )  +esr™ +e (roo)” + (€"Y'r_o, (17b)

where r 3 =14 3(2), and €5, = €,5(z}. For the non-harmonic component
in {17), we replace the terms of

~2rg(e5, B ~ yego M™)
+ * -+ Oltss 38
Freal —’{“’ |Bi2 — 2 [M]? }

and

B _ o —2rylegs BT — yel M)
roa s (7 g =

where 7, = 4 ¢ given in (7).
Thus with (18) substituted in (17a, b) we get

_ 2r,(ef, B — ye, M*)
+ . A4 _ 42T 53
(A+B+B")r] = eulr )V +eir - |Bs{s?-—fv2'M|3

« 2Tol€5s B — yel M)

LT R (19




STABILITY ANALYSIS OF COUNTER-PROPAGATING.. 109

To get ™ and r™ in a similar manner we use eg-s (2a, b) and (16b, ¢},
then comparing the coefﬁments of e* and ¢! and solving for r* and
7™ in terms of 7, and :r'3 where (75 )" =) we get

T o= 93 [YMESS - CSS(’\ + B*)]
S (A+B)(A+ B*) - v2 M |2

7

M(e™)* —et(A + BY)]
(A+ B)(A+ B*) — 42| M|’

+2r, (20a)

(r ) = “21';_ {'YM*['YMEL — €ss{A + BY)] * }

A+ B* | O+ BY(A+ BY) — 2312 T G

27‘0 'YM*[!TM(E_)* - E+(A + B*)} ~ *}
B T . (20b
)\+B*{ (A + B)( A+ B¥) — y2|M|? +{e7) (20D}
Using eg-s {20} into (17a) we get

?‘3 = =Ty, (21)

where

Al = e {YM*[YM(e7)* — e* (A + B)] +9(e7)")
+26,, (A + BY)[yM(e)* — et (A + B")]

2r(X + B*) - . .
o B|i( ,},2|M|2 {( EsaB Yess M ]—f" (e7) [ESSB - 7'555M]}
f —

(21a)

A; = n(A+ B X+ B+ B")+ 29M e [y Me,, — e55(X + BY)]

+2€55€0,m + 265 (A + BY)[YMel, — €5 (A + B")] (21b)
n = (A+B)A+ B~y M (21c)
By redefining the fields
P F] 6wikz + erikz

T E;e—zkz + F;(?tkz, (22)
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and since,
€(z,t) = €55 + eTeM 4 et (23)
we gef

er(z,t) = e (VI+ F(z)et + FX(z)e'™)

alz,t) = e (VI+ Faz)eM + Fj (1)), (24)
By using (24) into eg-s {1) and consistently putting Py p in the form

Py = P}’t LG8 4 Gge)‘*t

B = PbSt + GQEM + GZCA*t 5 (25)

where the G;’s are the phase-matched polarizations obtained by Fourier
transformation of r4 (see Appendix A) and k = kg — @ and equating the
coefficients of e* and e*"*, one gets a system of differential equations
written in a matrix forim:

d _ By
— F =M F 2
s 1 ] ( 6)

where F' = (F), Fy, F3, Fy). The elements of the matrix M represent
phase-matched four-wave-mixing interactions which couple each F to
the others [14] (see Appendix B). The formal solution of eq. (26) is
given by [14]

4
F(z2) =) afem*, (27)
i=]

where the f;’s and o;’s are the eigenvectors and eigenvalues of the matrix

M, and the ¢;’s are the coefficients to be determined by the boundary
conditions (BC). These BC for Fj 3 as forward amplitudes at z = 0 and
‘9.4 as backward amplitudes at z = L, are:

F1(0) = F3(0) = Fp(L) = Fy(L) =0, (28)

Le. the perturbation fields are zero at the inputs. Using the BC, eq.
(28), into {27) we get the system

CA—o, (29)
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where C' = (¢}, ¢, ¢3,¢4) and A are defined in Appendix B.

The solutions {27) with (29) are then non-zero (non-trivial) only if
det(A} = 0. This requirement is achieved by finding the threshold of
lustability and setting Re()) = 0, which describes the transition from
stable [7e(A) < 0] to unstable [Re()) > 0],

In our study of the behaviour of the system at the instability thresh-
old [Re{\) = 0], we had two unknowns for different values of the squeezed
parameters N and ¢y, so that det(A(A = iay)) = 0. Note that the de-
tuning is large according to our assumption (6§ 3 1) and the cooperative
parameter C satisfies C' « 4% in order to be consistent with the unde-
pleted fields.

We now comment on the numerical results. For the normal vacuuin
case when N = ¢ = 0, Figure 2, a “Top-like” region of transition appears
for large positive values of oy, (i. e. far off-resonance) and a “Whip-like”
small region appears for the negative values of a,,. Both regions are
symmetric with respect to 8. In the squeezed vacuun case with N = 0.1
anud, for different values of ¢, the transition regions (“Top” and “Whip”)
increase for ¢ = 0 and keep their symmetry with respect to 8 {Figure 3a).
For ¢ = /2, the “Top” region gets larger and asymrnetric with respect
to 8, with scattered regions around the “Whip” (Figure 3b). The case of
¢ = 7 (Figure 3c) is similar to the normal vacuum case (Figure 2). For
a larger value of N(= 1), Figure 4, there is a tendency of the splitting of
the “Top™ region and the threshold regious for non-zero values of 6 and
the “Whip"” region almost vanishes. For a further increase of N (=5} and
for ¢ = 7 (Figure 5) the “Whip” region disappears completely and the
“Top™ region is seperated into stretched isles in the positive #-direction
and with large values of a,,.
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Appendix A: Evaluation of The Phase-Matched
Polarizations Gi:1,2,3,f1

We have
1" g :
B }?/O () e da (A. 1a)
and
& ‘ 1 2 P 1 T
G4 = ;fo r (;]ei dz. (A. 1b)
First, we calculate Gy. From eq-s (20a), (21} and (22), eq. (A. 1a)
B
Gl:_[‘r‘+f2+f3]’ (A. 2)
nn
where
L = / YMr_,(e7) T dx, (A. 3a)
0
i, = f (A+ B )r_get et dp (A. 3b)
0

Iy = [ (YM — (A + B"))r_ €5 SheriE gy, (A. 3¢)
0 Az

Now, from eq-s (18) and (22) we have

ro(e)"

B* — ~M 5 0
— —2vVTr, |B]2_,;|M|2 (Fy et 1 Fem® 4 (Fyt Fi) |, (Ada)
r_oet

B* —yM ikz —2ikz
2T s —';IMF [Fo e 4 Fe 5 1 (R + F) |, (Adb)
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B* —~vM by
Teo o €ss = =24'f 2 { akz

. L o—2ikz ] A
[B[Z — A2 M2 v e + 2 (A.4c)

Similarly, from (21a, b, ¢) and {22) we put,

A = 2ﬁ(a1 e¥*7 4 gy e 4 (g +a2)) . {A. ba)
/Ig = a3 (eQikz + 6_2”“') + aq, (A. ob)
where
* * T}()\+B*)
= K BY —~ M AM — _ : : B
) 3 {[’\4' ¥ )’Y n ]B|2_’},3|JM12( 'YM)
B G gk W __n{A+BY) ’
+F2': (A+ B y M™) (A + BY) |B|2—72|M‘!2(B—,YM)
g " A+ B*) |,
a2 1[(/\+ Y M )y g |B[g_q/z;MV( 7 M)
0t B i e gy OB :
= B* — B — ‘ : -
+F1L (A + YM*) (A + BY) |B|'3—73['M|2(B vy M™)
as = 2I[yp + (M — (A + B*)AM + A + B")]
a4 = 2a3 + n(A + B")}A + B + BY). (A 6)

First, to calculate 7, of (A. 3a), we use (A 4a) to get

- 167 B*—yM
Iy = =——VIyMzry e _Fy A7
1 3 \/_’? T IB[Z—’Y‘ZiM[‘g 3 ( )
where {cousistent with the McCall method) Fi(z), i=1, ..., are con-
sidered constants over the integration period [0, #].
For Iy, eq. (A. 3b), we use (A.4b) to get
- 161 B*— vy M
Iy= —vVI{A+ BYr, — ——=FY . AR
2= 3 (A+ B*)r BE =ML (A. 8)
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Similarly, for I, eq. (A. 3c), by using eq-s {A.4c), and (A. 5), we get

m
I3 = ()33/ (a1€™® + 3(a; + az) € + (3a; + a3) ¥ + gy e~
[#]

+{3as + a;) e‘”) (2a3 cos(2z) + aq) "' dz, (A. 9a)

where
B* — ’YM
¥3 \/—To(']” ( + B")) |B|2 N ’}’2|M|2 (A 9b)
In eq. (A. 92} we need to evaluate the integral of the form
T 6£cxm
J == ___—_—dr _ 1 |
(@) /0 a cos(2x) + b &5 a=0,%1,+£3, +5 (A. 10)

(i) Fora =10

dz T

) = /; acos(2x) + b ViZ_ gt

Alternatively, we put a cos{2z) + b = acos?(z) + b, where & = 24
and b = b — a, which means that

e dz
J(0) :/ P —
o acos?(z)+b

= , B2 >at. (A 11b)

b > a? (A 11a)

(ii) Foriew=1;

B 21 - 2a
JiEl) = i—-—-———ga(b = ta ( B a) (A. 12)

(iii) For oo = +3; we use
e¥37 — 4 cos?(z)[cos(x) +isin(z)]-[3 cos(x) £ i sin(x)] and eg-s (A.
9b), (A. 10) and (A. 11), to get

4 24
JES) =+ i {
a 2a(b—a)

2w*@+4

a
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(iv) For oo = 5;  similarly,

a 3 E)
% &l B2 b i
i o {16-_2 & 12k IJ tan ™ (\/é) (A. 14a
aVh a a b '

and
, [2 h—
J(-5 =1 [—0 . “‘)}
w3 a

2 b— a)? =
- : {4( 2(1) + 6b “ + 1} tan”! 2 .
2a{b — a) a

—a

Hemnce, from (A. 9a), (A. 11), (A. 13) and (A. 14) we get

= 16 8
Is =a392i | — — ~(b-
3 (1’,3{ 2[3 a(b u)]
164 (b —a)? [ 24
+673 Lb__a)_ tan™" S } (A. 15)
a\/ﬁa(b —a} b—a
Substituting (A. 7), {A. 8) and (A. 15) into (A. 2), we get

2

6 = - (A Fy + Ajg By + Ay Fy + Ajq Fy ). (A. 16a)

The calculations for Gy 3 4 are very similar and yield the following:

2
Gy T}_ﬂ [Agy FI + A Fo + Al Fy + Agg Fy] (A 16b)
2 , \
Gy = - [Asi Fi + Ap Fy + Ags F3 + Ay Fy] (AL 16¢)
Gy =

= [An By + Ap Fy + Ay Fys + Ay Fy]. (AL 16d)
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The coefficients 4;; in eq-s (A. 16) are given by,

Ay;

Aso

.{433

A.’ﬂd

Ag

Aaz

a4y

&2

0

(A+B") a3 + ajgaro
yMays + anr ey

{

()\ -+ B*)alg — 14 Q10
~yMaiz - ajga;

1 A+ B*

Agrm +

A+ B*

yM — A —B*als}

(A+B" —yM")7M —n -

—(A+ BT —~yM")( A+ B*) — ¢

A+ B*

; B* — vM
"iEp =y

A+ B*
s (B —5
BE e

M)
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16 B* — M
SN i 7 L YA i
5 V17 B
. o Bi {2 (b—a]}_f_ 8i(b — a)? 5 ool 2a
= — - —— n )
H *1a 3 a a?y/2a{b - a) b—ua
(A. 17)
Appendix B

In solving the system of differential equations, eg-s (26), the matrix Ay
18 given by,

Ml = [Czj] } ?'s.? = 112}3941 (B 1)
where
2 A
Cn = ﬁAll_(_+29)
0
2
Cip = —gAIQ
?TJT
2
Ciy = —gAls
nm
2
Cpi = —gAm
nw
2
Cy = —gA21
nm
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and the coeflicients A4;; are given in (A. 17).

Cos

044
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(B. 2)

Evaluating, numerically, the eigenvalues o; and the corresponding

elgenvectors f;
as:

F(Z) = C

r

fui
Ji2
fis
14

e .

+ ¢4

[ fa
fa2
fas

|

(fi1, fiz, fia, fia), we get the general solution, eq. (27),

Applying the BCs, eqs(28), this system is reduced to the set of homoge-
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neous linear equations:

e fu + eofor + esfn + eafa
c1fis + cofes + cafsz + cafa

oy i gol : o3l ; asl
c1fize?" + cafon e 4 c3fs2€ 4+ cqfag et

H.A. Batarfi

0

I I I Es
arf14€”" + eafoq €7 4 c3fa4eT" + cafyq e =0,

1.e.
A=
where
[ fu frzent
_ fa fae™"
=
far fa et
| fa fret?
and

(j ::[Cl Co

fiz frae?

fay  fas et

fiz faaest

fas faae™h

C3 C4].
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Figures

2.
N )

-1500 -1000 -500 0 500 1000 1500

Figure 2: a,, versus  for the case of N = ¢, = 0 {normal case)

(=)

-10
-1500 -1000 . -500 [\] 500 ] 1000 1500

Figure 3: oy, versus & for the case of N = 0.1
and (a)@y, =0, (b)dy, = 7/2 and (¢)dm =7
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{t}

a

te)

[}
4 b b 8 ko oo m

5
g
g
g
g
g

Figure 4: o, versus & for the case
of N =1 and (a)¢y, =0, (b)dy, = /2 and (¢)¢y, = 7
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Q () 4|
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@ (p———
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40
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g
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- 1000 0 1000 2000
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Figure 5: oy, versus @ for the case of N =5 andé,, = #
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